An idea on how to monitor growth of database tables in an system
using Bischeck

Anders Haal

anders.haal@ingby.com

Introduction

The background to this solution is a customer that has a need to monitor the growth of key
tables in their ERP system. The requirement was that the tables where not allowed to grow
more then 20% percent under a specific time period of 4 hours. If they did, an alarm must
be generated in their Nagios based surveillance system.

In this example we will use a number of key features in Bischeck to solve the requirements
and also show how Bischeck can be used when simple nagios checks is not enough.
Some of the key features are:

* Dynamic thresholding

* Virtual services

* Time based scheduling

* Bischeck cache capability

After we have presented the basic solution we will elaborate how this example can be
extended and what additional configuration that can be done to increase the monitoring
capability.

Overview

In Bischeck we have the basic concept of host and service. This is very much in-line with
the Nagios concept. If Bischeck is integrated with Nagios over NSCA the host and service
name must be the same in both Bischeck and Nagios. In addition Bischeck has the
concept of serviceitem. A service has one or many serviceitem and its the serviceitem that
define what to execute for the service. So for a Bischeck service you define connection to
a system and the schedule when to connect to the system to retrieve the monitoring data.
When a connection is made all serviceitem execution statements are execute against the
server that is to be monitored. When the serviceitem has retrieved the data it is stored in
the Bischeck cache and then sent to the threshold class, if configured for the serviceitem,
to be evaluated against the threshold rules. The result of the threshold execution is a state
— OK, WARNING, CRITICAL or UNKOWN, just like Nagios likes it. The result is then sent
to the Nagios as a normal passive check, with state and performance data.

The configuration files for Bischeck is located in the etc directory of the Bischeck
installation. In this example we file focus on the bischeck.xml file that define host, service

www.bischeck.org
All rights reserved Ingengdrsbyn AB www.ingby.com

http://Www.bischeck.com/
mailto:anders.haal@ingby.com

and serviceitem and on the 24thresholds.xml that define dynamic thresholds over a 24
hour day.

Step 1 — Monitoring the size of the ERP table

First we start with defining a host, a service and serviceitem to query the size of the ERP
systems order table. The SQL is of course something you must change to what ever way
you determine the “size” of a table. For this example its just a count of all the rows.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<bischeck>
<host>
<name>erphost</name>
<desc>Host running ERP system</desc>
<service>
<name>erptableSize</name>
<desc>Service to check tables size in the ERP system</desc>
<schedule>0 0 */4 * * ? </schedule>
<url>jdbc:mysql://localhost/bischecktest?user=bischeck&password=bischeck</url>
<driver>com.mysql.jdbc.Driver</driver>

<serviceitem>
<name>erptableOrder</name>
<desc>Check the table size of the order table</desc>
<execstatement>select count(*) from order</execstatement>
<serviceitemclass>SQLServiceltem</serviceitemclass>
</serviceitem>

</service>
</host>
</bischeck>

As you see above we defined a host called erphost, a service called erptableSize and one
serviceitem called erptableOrder. For the service we use a url defined as a jdbc connection
to connect to the ERP server database, of course you have to change this to fit your
system and database. The service also have a schedule that is define like cron to run
every 4 hour. We also defined the SQL that retrieve the number of rows of the table order.
We also define that the serviceitem should use a serviceitem class called SQLServiceltem
that is used to do SQL.

The configuration do not have any threshold class defined since its not the absolute size
we want to monitor but we want to monitor the growth of the table under a 4 hour period.

To get the data over to Nagios we must enable passive checks in Nagios and setup the
NSCA daemon.

In Nagios we will now get a passive check every 4 hour with the total number of rows in the
order table, but the state is always OK. If you have pnp4nagios or equivalent you get a nice
graph showing how the order table size change.

Step 2 — Monitoring the growth of the ERP table

www.bischeck.org
All rights reserved Ingengdrsbyn AB www.ingby.com

http://Www.bischeck.com/

Since the growth is the ratio between the order table size with 4 hour interval we must use
some way to calculate the ratio based on current order table size and what the size was 4
hours ago. This is where the Bischeck cache comes into play and a serviceitem class
called CalculateOnCache. This class can do mathematical calculation based on cached
data. So we add a new service called erptableGrowth to the host erphost in the existing
configuration.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<bischeck>
<host>
<name>erphost</name>
<desc>Host running ERP system</desc>

<service>
<name>erptableSize</name>
<desc>Service to check tables size in the ERP system</desc>
<schedule>0 0 */4 * * ? </schedule>
<url>jdbc:mysql://localhost/bischecktest?user=bischeck&password=bischeck</url>
<driver>com.mysql.jdbc.Driver</driver>

<serviceitem>
<name>erptableOrder</name>
<desc>Check the table size of the order table</desc>
<execstatement>select count(*) from order</execstatement>
<serviceitemclass>SQLServiceltem</serviceitemclass>
</serviceitem>

</service>

<service>
<name>erptableGrowth</name>
<desc>Service to check the growth of the ERP tables</desc>
<schedule>0 5 */4 * * ? </schedule>
<url>bischeck://LastStatusCache</url>

<serviceitem>
<name>erptableOrder</name>
<desc>Check the growth of order table</desc>
<execstatement>100 * (erphost-erptableSize-erptableOrder[0] - erphost-erptableSize-

erptableOrder[1l]) / erphost-erptableSize-erptableOrder[1l]</execstatement>

<thresholdclass>Twenty4HourThreshold</thresholdclass>
<serviceitemclass>CalculateOnCache</serviceitemclass>

</serviceitem>

</service>
</host>
</bischeck>

As you can see from above configuration we now have added the service erptableGrowth.
This service has a url to make a connection to Bischeck internal cache. It will run every 4
hour, 5 minutes after the hour. The interesting part is the serviceitem added called
erptableOrder that use cached data to calculate some new value that will be used for
monitoring. In Bischeck we call this a virtual service since the value is not directly retrieved
from a system, instead created from the cached data. The execute statement string will
take the last value that was retrieved by

erphost-erptableSize-erptableOrder at index 0 and subtract that from the previous value,
index 1, then divide it by the previous value, index 1, and multiple by 100. This will give the

www.bischeck.org
All rights reserved Ingengdrsbyn AB www.ingby.com

http://Www.bischeck.com/

A & l"»
&
s
! g
" 1
e e

percentage increase of the table size during the last 4 hours.
The notation erphost-erptablesize-erptableorder[x] Will be replaced at execution with the real data in
the cache, where X is the index. Index 0 is always the last stored data.

But we still have no thresholds for this serviceitem, but we have configured it to use the
threshold class Twenty4HourThreshold. So that is our next step, configure the threshold.

Step 3 — Defining thresholds on serviceitem

Earlier we stated that we wanted to have a threshold when the table growth was above
20%. Lets see how this is achieved. To do this we need to do some configuration the file
24thresholds.xml.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<twenty4threshold>
<servicedef>
<hostname>erphost</hostname>
<servicename>erptableGrowth</servicename>
<serviceitemname>erptableOrder</serviceitemname>
<period>
<calcmethod><</calcmethod>
<warning>0</warning>
<critical>10</critical>
<hoursIDREF>1</hoursIDREF>
</period>
</servicedef>

<hours hoursID="1">
<hourinterval>
<from>00:00</from>
<to>23:00</to>
<threshold>20</threshold>
</hourinterval>
</hours>

<holiday year="2012">
<dayofyear>0101</dayofyear>
<dayofyear>0106</dayofyear>
<dayofyear>0422</dayofyear>
<dayofyear>0424</dayofyear>
<dayofyear>0425</dayofyear>
<dayofyear>0501</dayofyear>
<dayofyear>0602</dayofyear>
<dayofyear>0606</dayofyear>
<dayofyear>0612</dayofyear>
<dayofyear>0625</dayofyear>
<dayofyear>1105</dayofyear>
<dayofyear>1225</dayofyear>
<dayofyear>1226</dayofyear>

</holiday>

</twenty4threshold>

For the Twenty4HourThreshold class you define thresholds for each host, service and
serviceitem you want to have thresholding on called. These entries are called servicedef.
For each servicedef one or many periods can be defined to configure different settings for
a combination of a calender like month, week, day in month and day in week. If a period do
not have any calendar definitions if will used as the default period.

www.bischeck.org
All rights reserved Ingengdrsbyn AB www.ingby.com

http://Www.bischeck.com/

So in the above configuration we only have a default period that define that the threshold
calculation method is <, meaning that measured values should be below threshold. We
also define warning and critical level. In this case warning is 0% of threshold and warning
alarm will be created if measured value is on the threshold level and up to the critical level
which is set to 10% of the threshold. So what is the threshold?

For the period entry an hoursIDREF is defined. This “points” to a 24 hour profile, in this
case id 1.

The hours tag has one or several hourinterval tags defining a from-to interval. The
threshold set for two consecutive hours are used to calculate a liner equation for any
thresholds between the consecutive hours. In our case we made it simple saying that the
threshold for all hours are 20.

To summaries what we have done:

1. We retrieve the current size of the order table by using the configuration of
erphost->erptableSize->erptableOrder

2. We calculate the growth by using the cached data in configuration of the
erphost->erptableGrowth->erptableOrder.

3. The value from erphost->erptableGrowth->erptableOrder is processed through the
defined threshold class where we have specified a threshold for all hours to be 20.
If the growth is above 20 but below 22 (critical level was set to 10%) the state will be
WARNING and if the growth is 22 and above the state will be CRITICAL. State OK
is for all values below 20.

Step 4 — Multiple serviceitems

Since we probably have more tables to monitor then the order table we would like to
configure monitoring for the rest of the key ERP tables. One way to do this is to make a
new service and serviceitem for each of the existing tables or make additional serviceitems
on the existing service. We will show last way by adding more serviceitems to the service
erptableSize:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<bischeck>
<host>
<name>erphost</name>
<desc>Host running ERP system</desc>

<service>
<name>erptableSize</name>
<desc>Service to check tables size in the ERP system</desc>
<schedule>0 0 */4 * * ? </schedule>
<url>jdbc:mysql://localhost/bischecktest?user=bischeck&password=bischeck</url>
<driver>com.mysqgl.jdbc.Driver</driver>

<serviceitem>
<name>erptableOrder</name>
<desc>Check the table size of the order table</desc>

www.bischeck.org
All rights reserved Ingengdrsbyn AB www.ingby.com

http://Www.bischeck.com/

<execstatement>select count(*) from order</execstatement>
<serviceitemclass>SQLServiceltem</serviceitemclass>
</serviceitem>

<serviceitem>
<name>erptableCustomer</name>
<desc>Check the table size of the order table</desc>
<execstatement>select count(*) from customer</execstatement>
<serviceitemclass>SQLServicelItem</serviceitemclass>
</serviceitem>

</service>

<service>
<name>erptableGrowth</name>
<desc>Service to check the growth of the ERP tables</desc>
<schedule>0 5 */4 * * ? </schedule>
<url>bischeck://LastStatusCache</url>

<serviceitem>
<name>erptableOrder</name>
<desc>Check the growth of order table</desc>
<execstatement>100 * (erphost-erptableSize-erptableOrder[0] - erphost-erptableSize-

erptableOrder[1]) / erphost-erptableSize-erptableOrder|[1l]</execstatement>

<thresholdclass>Twenty4HourThreshold</thresholdclass>
<serviceitemclass>CalculateOnCache</serviceitemclass>

</serviceitem>

</service>
</host>
</bischeck>

Now we added the serviceitem to measure table of the customer table in the existing
service erptableSize. This is possible if:
» All serviceitem can used the same url connection, which for this example means
that the tables are in the same database.
* Its okay to execute all serviceitems on the same scheduled time defined by the
service.

Even if we have multiple serviceitem on a service all data will be sent to Nagios in the
NSCA message so each individual serviceitems can be graphed. Message will for a
service with multiple serviceitem look like this example:

OK erptableOrder = 61000 (NA) erptableCustomer 0

= 10001 (NA) | erptableOrder=61000;0.0;0.0;0;
threshold=0.0;0;0;0;erptableCustomer=10001;0.0;0.0;

0
0; threshold=0.0;0;0;0; avg-exec-time=10ms

The (NA) means that no threshold is used for this serviceitem, which is true for the
measuring of the table size.

Multiple serviceitems can of course be configured for our growth service erptableGrowth:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<bischeck>
<host>
<name>erphost</name>
<desc>Host running ERP system</desc>

<service>
<name>erptableSize</name>
<desc>Service to check tables size in the ERP system</desc>

www.bischeck.org
All rights reserved Ingengdrsbyn AB www.ingby.com

http://Www.bischeck.com/

<schedule>0 0 */4 * * ? </schedule>
<url>jdbc:mysql://localhost/bischecktest?user=bischeck&password=bischeck</url>
<driver>com.mysql.jdbc.Driver</driver>

<serviceitem>
<name>erptableOrder</name>
<desc>Check the table size of the order table</desc>
<execstatement>select count(*) from order</execstatement>
<serviceitemclass>SQLServicelItem</serviceitemclass>
</serviceitem>

<serviceitem>
<name>erptableCustomer</name>
<desc>Check the table size of the order table</desc>
<execstatement>select count(*) from customer</execstatement>
<serviceitemclass>SQLServiceltem</serviceitemclass>
</serviceitem>

</service>

<service>
<name>erptableGrowth</name>
<desc>Service to check the growth of the ERP tables</desc>
<schedule>0 5 */4 * * ? </schedule>
<url>bischeck://LastStatusCache</url>

<serviceitem>
<name>erptableOrder</name>
<desc>Check the growth of order table</desc>
<execstatement>100 * (erphost-erptableSize-erptableOrder[0] - erphost-erptableSize-
erptableOrder[1l]) / erphost-erptableSize-erptableOrder[l]</execstatement>
<thresholdclass>Twenty4HourThreshold</thresholdclass>
<serviceitemclass>CalculateOnCache</serviceitemclass>
</serviceitem>
<serviceitem>
<name>erptableCustomer</name>
<desc>Check the growth of order table</desc>
<execstatement>100 * (erphost-erptableSize-erptableCustomer[0] - erphost-
erptableSize-erptableCustomer[l]) / erphost-erptableSize-erptableCustomer[l]</execstatement>
<thresholdclass>Twenty4HourThreshold</thresholdclass>
<serviceitemclass>CalculateOnCache</serviceitemclass>
</serviceitem>

</service>
</host>
</bischeck>

To get the threshold for the new customer table an additional configuration in the
24thresholds.xml file must be done in the same way it was done for the threshold for the
order growth serviceitem.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<twenty4threshold>
<servicedef>
<hostname>erphost</hostname>
<servicename>erptableGrowth</servicename>
<serviceitemname>erptableOrder</serviceitemname>
<period>
<calcmethod><</calcmethod>
<warning>0</warning>
<critical>10</critical>
<hoursIDREF>1</hoursIDREF>
</period>
</servicedef>

<servicedef>
<hostname>erphost</hostname>

www.bischeck.org
All rights reserved Ingengdrsbyn AB www.ingby.com

http://Www.bischeck.com/

<servicename>erptableGrowth</servicename>
<serviceitemname>erptableCustomer</serviceitemname>
<period>
<calcmethod><</calcmethod>
<warning>5</warning>
<critical>15</critical>
<hoursIDREF>1</hoursIDREF>
</period>
</servicedef>

As you can see we have different warning and critical level for customers but we still use
the same hour profile definition where hoursID 1. This can of course be changed by
creating additional hours with different profile.

When we have multiple serviceitems on a single service it important to understand that the
state of the service that will be sent to Nagios is the state of the serviceitem with the
highest severity level. This means if the order growth is critical and the customer growth is
in an OK the state will be critical in Nagios. The benefit in Nagios is that we only have one
service called erptableGrowth that is that include all tables.

To have multiple serviceitem on a single service or have separated service with just one
serviceitem is depending on how you like to manage it in Nagios. If you want one alarm
independent of what table that is growing above threshold and its the same group
managing all tables then its probably good to have a single service with multiple
serviceitems. From the data sent to Nagios it still possible to see what individual
serviceitem that was above threshold.

Step 5 — More on advanced thresholding

There is some additional configuration we can do on our thresholding:
* More periods
» Different values in the 24 period

The reason to have more periods definition is that business volumes are different
depending on calendar. For example we would expect that the order table grow much
more if its a Friday, if its the first day of the month and if its the 5" of December because
this is how the business works (This is just for example). So if this is Friday, the first day of
the month and/or the 5/12 we can accept 30% growth during the 4 hour period. To achieve
this we add additional period definitions to the servicedef and add additional hours.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<twenty4threshold>
<servicedef>
<hostname>erphost</hostname>
<servicename>erptableGrowth</servicename>
<serviceitemname>erptableOrder</serviceitemname>
<period>
<months>

www.bischeck.org
All rights reserved Ingengdrsbyn AB www.ingby.com

http://Www.bischeck.com/

<dayofmonth>1</dayofmonth>
</months>
<months>
<month>12</month>
<dayofmonth>5</dayofmonth>
</months>
<weeks>
<dayofweek>6</dayofweek>
</weeks>
<calcmethod><</calcmethod>
<warning>5</warning>
<critical>15</critical>
<hoursIDREF>2</hoursIDREF>
</period>

<period>
<calcmethod><</calcmethod>
<warning>0</warning>
<critical>10</critical>
<hoursIDREF>1</hoursIDREF>
</period>
</servicedef>

<hours hoursID="1">
<hourinterval>
<from>00:00</from>
<to>23:00</to>
<threshold>20</threshold>
</hourinterval>
</hours>

<hours hoursID="2">
<hourinterval>
<from>00:00</from>
<to0>23:00</to>
<threshold>30</threshold>
</hourinterval>
</hours>

The other thing we could configure is if we like to have a higher granularity of the growth
depending on the time of the day. Currently we have set 20 (or 30) for all 24 hours. But
maybe we can expect to have a higher growth during some period of the day.

<hours hoursID="1">
<hourinterval>
<from>00:00</from>
<to>09:00</to>
<threshold>20</threshold>
</hourinterval>

<hourinterval>
<from>10:00</from>
<to>14:00</to>
<threshold>30</threshold>

</hourinterval>

<hourinterval>
<from>15:00</from>
<to0>23:00</to>
<threshold>20</threshold>

</hourinterval>

</hours>

Now we have set the threshold for 10:00 and 14:00 to 30. This means between 09:00 and

www.bischeck.org
All rights reserved Ingengdrsbyn AB www.ingby.com

http://Www.bischeck.com/

10:00 we calculate the threshold as a linear equation with the starting at 20 and end at 30.
This means if the threshold is check at 10:30 the threshold is calculated to 25. With
mechanism we can define the dynamic in thresholds in the same way that our business is
dynamic depending on time of day and by day in the calendar.

If we like to make the threshold more advanced we can instead of number use data we
have in the cache. For example if there is a relation between the customer table growth
and the order table growth that define that customer table growth should be less then 80%
of the order growth. To configure this we can now use the cache data to create a hour
threshold profile with the |OgiC like “o.8* erphost-erptableGrowth-erptableOrder[0]. Below is a
hours profile that show a combination of what has been discussed that could be used by
the customer growth.

<hours hoursID="10">
<hourinterval>
<from>00:00</from>
<to>09:00</to>
<threshold>20</threshold>
</hourinterval>

<hourinterval>

<from>10:00</from>

<to>14:00</to>

<threshold>0.8* erphost-erptableGrowth-erptableOrder[0]</threshold>
</hourinterval>

<hourinterval>
<from>15:00</from>
<to>23:00</to>
<threshold>30</threshold>

</hourinterval>

</hours>

Step 6 — Just one more thing

As you remember from the introduction we where not interested to measure the size of the
tables but only the growth. For that reason no thresholding was configured for the
serviceitems belonging to the service erptableSize. But lets say we also like to set a
threshold for the max size of the tables to get alarm when that level is reached. To do this
we simple add the thresholdclass to the existing serviceitems in service erptableSize.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<bischeck>
<host>
<name>erphost</name>
<desc>Host running ERP system</desc>

<service>
<name>erptableSize</name>
<desc>Service to check tables size in the ERP system</desc>
<schedule>0 0 */4 * * ? </schedule>
<url>jdbc:mysql://localhost/bischecktest?user=bischeck&password=bischeck</url>
<driver>com.mysql.jdbc.Driver</driver>

www.bischeck.org
All rights reserved Ingengdrsbyn AB www.ingby.com

http://Www.bischeck.com/

A = l"»
AP
-
! o
e -
<serviceitem>

<name>erptableOrder</name>

<desc>Check the table size of the order table</desc>

<execstatement>select count(*) from order</execstatement>

<serviceitemclass>SQLServiceltem</serviceitemclass>

<thresholdclass>Twenty4HourThreshold</thresholdclass>
</serviceitem>

<serviceitem>
<name>erptableCustomer</name>
<desc>Check the table size of the order table</desc>
<execstatement>select count(*) from customer</execstatement>
<serviceitemclass>SQLServiceltem</serviceitemclass>
<thresholdclass>Twenty4HourThreshold</thresholdclass>
</serviceitem>

</service>
</bischeck>

Then we create a threshold configuration for the serviceitems, like:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<twenty4threshold>
<servicedef>
<hostname>erphost</hostname>
<servicename>erptableSize</servicename>
<serviceitemname>erptableOrder</serviceitemname>
<period>
<calcmethod><</calcmethod>
<warning>10</warning>
<critical>20</critical>
<hoursIDREF>4</hoursIDREF>
</period>
</servicedef>

<hours hoursID="4">
<hourinterval>
<from>08:00</from>
<to>18:00</to>
<threshold>200000</threshold>
</hourinterval>
</hours>

So now we have defined a size threshold for the order table at 200 000 between 08:00 ans
18:00. A warning alarm will be generated when the size reach 220 000 and a critical alarm
when the size reach 240 000.

Setting up Nagios
To make this example integrate with Nagios the following steps is required:

* Nagios must allow passive checks — nagios.cfg

* Nsca must be started. Nsca password and “encryption” mode must be define in
nsca.cfg and in Bischeck properties.xml

* Create host erphost in Nagios

* Create service erptableSize and erptableGrowth in Nagios and enable passive
check for both.

www.bischeck.org
All rights reserved Ingengdrsbyn AB www.ingby.com

http://Www.bischeck.com/

Summery

Hopefully this paper show a solution to a problem that Bischeck can fix in a simple and
effective way by using the features of virtual service, dynamic thresholding and by using
cached historical data. The solution to the problem as been solved without any coding,
only Bischeck configuration. The principles of this solution should be applicable to any
problem with the same characteristics where we want to detect growth or decline of some
measurable volume.

There is also a other important aspect of this and that is maintenance. When business
change it easy to change or add the Bischeck configuration without any changes or
restarting requirements on the Nagios infrastructure. The Bisconf web tool support
management of the Bischeck configuration, including versions of configuration files,
tracking on who made the changes and for user with the right authority Bischeck can be
reloaded directly from Bisconf.

Bischeck and Bisconf are licensed under GPL2. To learn more about Bischeck and Bisconf
read more at www.bischeck.org.

www.bischeck.org
All rights reserved Ingengdrsbyn AB www.ingby.com

http://Www.bischeck.com/
http://www.bischeck.org/

